AHOI2022 排列

有趣的数论题目,似乎说不上用了什么高级知识。

题意:一个排列的权值定义为最少置换次数使得出现循环。给出排列,求将任意两个不在一个置换环的数交换后排列的权值和。$n\leq 5\times 10 ^ 5$。

首先,容易发现一个排列的取值就是虽有置换环长度的 $\text{lcm}$。

$\text{lcm}$ 可能会炸,所以需要考虑枚举所有的质数,求质数幂次的最大值,最后合并答案。

考虑暴力枚举两个不同的置换环,我们需要将这两个环对于 $\text{lcm}$ 的贡献去掉,然后将两个置换环长度和加入整个 $\text{lcm}$ 的贡献。去掉两个数可能会产生删除最大值两次,于是我们需要维护质数幂的前三大值以便维护。回滚的时候记录下所有改变的值即可。

暴力枚举置换环最坏是 $O(n ^ 2)$ 的,还没有算计算 $\text{lcm}$ 的复杂度,但是容易发现只有 $O(\sqrt n)$ 个不同的置换环长度,而贡献又只与长度相关。这样枚举复杂度降为 $O(n)$,后面直接暴力枚举涉及到的质数即可通过。不太会算复杂度,据说是 $O(n\log n)$?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
void work()
{
read(n);
all.clear();
for (int i = 1; i <= n; ++ i) read(a[i]);
for (int i = 1; i <= n; ++ i) vis[i] = false;
for (int i = 1; i <= n; ++ i) cnt[i] = 0;
for (int i = 1; i <= n; ++ i) mx1[i] = mx2[i] = mx3[i] = 0;
for (int i = 1; i <= n; ++ i) {
if (vis[i]) continue;
int j = i, cir = 0;
while (!vis[j]) cir ++, vis[j] = true, j = a[j];
if (!cnt[cir] ++) all.push_back(cir);
// printf("Cir %d\n", cir);
}
for (int c : all) {
int cur = c, t = 0, p;
while (cur ^ 1) {
p = fac[cur].front(), t = 0;
while (cur % p == 0) t ++, cur /= p;
for (int cs = 1; cs <= cnt[c]; ++ cs)
if (t > mx1[p]) mx3[p] = mx2[p], mx2[p] = mx1[p], mx1[p] = t;
else if (t > mx2[p]) mx3[p] = mx2[p], mx2[p] = t;
else chkmax(mx3[p], t);
}
}
int lcm = 1, res = 0;
for (int i = 1; i < N; ++ i)
if (mx1[i]) lcm = (LL) lcm * pw[i][mx1[i]] % Mod;
// printf("Lcm = %d\n", lcm);
for (int c1 : all)
for (int c2 : all) {
if (c1 == c2 && cnt[c1] == 1) continue;
int cur = lcm;
auto del = [&](int x) {
int p, t;
while (x ^ 1) {
p = fac[x].front(), t = 0;
if (!havbac[p])
havbac[p] = true, bac1[p] = mx1[p], bac2[p] = mx2[p], bac3[p] = mx3[p];
while (x % p == 0) t ++, x /= p;
if (t == mx1[p])
cur = (LL) cur * inv[p][mx1[p] - mx2[p]] % Mod, mx1[p] = mx2[p], mx2[p] = mx3[p];
else if (t == mx2[p]) mx2[p] = mx3[p];
}
};
auto ins = [&](int x) {
int p, t;
while (x ^ 1) {
p = fac[x].front(), t = 0;
if (!havbac[p])
havbac[p] = true, bac1[p] = mx1[p], bac2[p] = mx2[p], bac3[p] = mx3[p];
while (x % p == 0) t ++, x /= p;
if (t > mx1[p])
cur = (LL) cur * pw[p][t - mx1[p]] % Mod, mx3[p] = mx2[p], mx2[p] = mx1[p], mx1[p] = t;
else if (t > mx2[p]) mx3[p] = mx2[p], mx2[p] = t;
else chkmax(mx3[p], t);
}
};
auto bac = [&](int x) {
int p, t;
while (x ^ 1) {
p = fac[x].front(), t = 0;
while (x % p == 0) t ++, x /= p;
if (havbac[p])
havbac[p] = false, mx1[p] = bac1[p], mx2[p] = bac2[p], mx3[p] = bac3[p];
}
};
del(c1), del(c2), ins(c1 + c2);
bac(c1), bac(c2), bac(c1 + c2);
// printf("%d %d %d", c1, c2, cur);
if (c1 == c2) res = (res + (LL) cur * cnt[c1] % Mod * (cnt[c1] - 1) % Mod * c1 % Mod * c1) % Mod;
else res = (res + (LL) cur * cnt[c1] % Mod * cnt[c2] % Mod * c1 % Mod * c2) % Mod;
// printf(" : %d\n", res);
}
printf("%d\n", res);
}